Skip Navigation

Five Things the “Nuclear Bros” Don’t Want You to Know About Small Modular Reactors

A realistic understanding of their costs and risks is critical.

What are SMRs?

  1. SMRs are not more economical than large reactors.
  2. SMRs are not generally safer or more secure than large light-water reactors.
  3. SMRs will not reduce the problem of what to do with radioactive waste.
  4. SMRs cannot be counted on to provide reliable and resilient off-the-grid power for facilities, such as data centers, bitcoin mining, hydrogen or petrochemical production.
  5. SMRs do not use fuel more efficiently than large reactors.

[Edit: If people have links that contradict any the above, could you please share in the comment section?]

58 comments
  • While clearly biased and theres some wording and cherrypicking of studies (that isn't very egregious, to be clear!) that I'd take issue with in a more formal setting, the content of the article thru to point two are really quite an alright summary of the issues and raises some very valid questions the industry has yet to answer.

    However it throws itself off the credibility cliff riiiiiight around this point:

    In any event, regulators are loosening safety and security requirements for SMRs in ways which could cancel out any safety benefits from passive features. For example, the NRC has approved rules and procedures in recent years that provide regulatory pathways for exempting new reactors, including SMRs, from many of the protective measures that it requires for operating plants, such as a physical containment structure, an offsite emergency evacuation plan, and an exclusion zone that separates the plant from densely populated areas. It is also considering further changes that could allow SMRs to reduce the numbers of armed security personnel to protect them from terrorist attacks and highly trained operators to run them. Reducing security at SMRs is particularly worrisome, because even the safest reactors could effectively become dangerous radiological weapons if they are sabotaged by skilled attackers. Even passive safety mechanisms could be deliberately disabled.

    What in the fearmongering fuck is this? "Oh no, terrorists!" And it's debunked on the first page of one of its own sources. Regulators have NOT put any pathways in place to "exempt SMRs from many of the protective measures." If you read the sources, what they have done is put in place guidelines for the evaluation of the current measures, to judge if those measures merit being re-evaluated. Its a path for a path to judge if maybe we should have a path.

    And fucking hell, yes of course they would have smaller security contingents, the installations are physically smaller! There's less to guard! Thats in no small part the point!

    Look there are a lot of problems with SMRs and even more questions we just don't have answers for yet. Those questions need answers before any progress can be made with SMRs. The benefits of lower transmission losses, dedicated power generation for industrial complexes being at all beneficial, or remotely finalized designs for the reactor technology needed here are all MASSIVE outstanding issues that have yet to be solved.

    But this shit? "we cant have this source of green energy because terrorists!!!"

    Fuck off with that.

    There are more than enough issues with SMRs to justify extreme skepticism, hell microsoft wanting a bunch is probably reason enough to abandon the whole concept. We dont need to stoop to disinformation and blatant lies, what the fuck. This is why "nuclear bros" (Which great idea, lets "other" the critics, that's not a red flag at all...) get so much traction, because they dont stoop to conspiracy theory tropes to support their arguments.

  • The economic advantage of SMRs is that when you make reactors in a location, the 1st is always more expensive than any following reactors. Just a reality of construction, permits, designs, etc. So if you have 4 reactors in one place, that's pretty nice. They also have the advantage of being able to turn one off for maintenance and then having 2, 3, 4 other reactors in the same vicinity that can pick up the slack for the duration.

    As for waste, yeah it's the same problem. But it's important to note that the volume of material is not that big. The entire volume produced by all us nuke energy ever takes up a football field stacked 10 yards high. All told, that's a smaller problem than I ever thought.

    I'm not a big nuclear advocate, I'm pretty mid on it. This is where I got all of the above information, an interview with the head of the US DOE loan program https://www.volts.wtf/p/nuclear-perhaps?utm_campaign=post&utm_medium=web

    • The nice thing about nuclear waste is that it kind of just sorts itself out too. I half suspect not knowing what to do with it and kicking the can down the road is sort of the whole point. Nominally it's pretty easy to deal with nuclear waste, you seal it up somewhere and leave it to not be radioactive any more. The problem is it takes a long time, and we don't really know how to communicate to anyone 1000 years in the future "there's nuclear waste here, stay the fuck away". Making sure it's an active topic for discussion kind of keeps it at the forefront and means it's not forgotten about.

      • I also learned in that interview that after a relatively short period, the aggressive decay is over and you're left with a barrel of waste that isn't actually shooting off radiation very often.

      • Except that is hardly unique to nuclear waste. A wide variety of industrial processes produce high grade chemical waste, especially electronics like computers, solar panels, and inverters. This is just as deadly as any nuclear waste, and if stumbled upon will kill just as quickly in a hundred years, a thousand years, million years, or a billion years.

        There is however a well established solution to this problem, and that is making sure the government knows what and where it is as well as that someone it monitoring and securing the site. The actual chemical makeup of the stuff that kills you doesn’t actually matter all that much compared to makeing sure it stays where it’s supposed to be.

    • Thank you for sharing this link. It was very interesting listening to someone from within the US that is head of an office now and started from Shell Solar.

      There is a reasoning that I didn't get. Maybe I misunderstood something or I lack some information/knowledge. Anyways, here it is:

      At 1:02 they talks about nuclear waste saying that all the nuclear waste produced in the US by the nuclear power plants is like a football field that is 10 yards tall and then he talks about why this waste is not concerning.

      Later at 1:07 He mentions that the US is not reprocesing the uranium fuel rods, in which 95% of the energy is still there, and that the US should do reprocessing like other countries do.

      Doesn't that mean that these unprocessed rods in the US that are in the "football field of nuclear waste" are therefore a concern?

      • So energy remaining and radioactivity are separate. The isotope that it becomes has a decently long half life, but it might only be a few protons or neutrons away from something really radioactive.

        I do believe that the fuel rods count towards that pile of waste. I think the US has laws or rules that make it hard or impossible to recycle these back into the good stuff, but it's very doable. France does it to a high degree.

  • I know nothing on the topic, but the points you raise don't seem relevant to me?

    SMRs are not more economical than large reactors.

    Yeah, economies of scale mean small things are generally less efficient than big things. This is a criticism of local power generation that applies just as well to wind turbines for example. Nothing to do with this idea really.

    SMRs are not generally safer or more secure than large light-water reactors.

    Why would anyone expect large power plants to be less safe than this? I'd expect the technology in both to be safe. Tell me if this is safe or not, not if it's "safer" than large power plants on some ambiguous scale. Rooftop solar is also less safe than commercial solar power plants just due to being located near someone's living space, but it's a useless relative comparison.

    SMRs will not reduce the problem of what to do with radioactive waste.

    That one is the only valid point to me.

    SMRs cannot be counted on to provide reliable and resilient off-the-grid power for facilities, such as data centers, bitcoin mining, hydrogen or petrochemical production.

    Why not? Seems like they would.

    SMRs do not use fuel more efficiently than large reactors.

    This is just a repeat of the first point.

    Again, I know nothing on this and don't have an opinion either way. I'm pointing out this seems to be a criticism but only one of the 5 points seems to actually criticize this.

  • I think the EU Commission has done a fairly good job of listing the pros and contras of small modular reactors:

    https://energy.ec.europa.eu/topics/nuclear-energy/small-modular-reactors/small-modular-reactors-explained_en

    They have some advantages over conventional (large) reactors in the following areas:

    • if they are serially manufactured without design chances, manufacturing is more efficient than big unique projects
    • you can choose a site with less cooling water
    • you can choose a site where a fossil-burning plant used to be (grid elements for a power plant are present) but a renewable power plant may not be feasible
    • some of them can be safer, due to a higher ratio of coolant per fuel, and a lower need for active cooling*

    Explanation: even a shut down NPP needs cooling, but bigger ones need non-trivial amounts of energy, for example the 5700 MW plant in Zaporizhya in the middle of a war zone needs about 50 MW of power just to safely stay offline, which is why people have been fairly concerned about it. For comparison, a 300 MW micro-reactor brought to its lowest possible power level might be safe without external energy, or a minimal amount of external energy (which could be supplied by an off-the-shelf diesel generator available to every rescue department).

    The overview of the Commission mentions:

    SMRs have passive (inherent) safety systems, with a simpler design, a reactor core with lower core power and larger fractions of coolant. These altogether increase significantly the time allowed for operators to react in case of incidents or accidents.

    I don't think they will offer economical advantages over renewable power. Some amont of SMRs might however be called for to have a long-term steerable component in the power grid.

  • All these are kinda no brainers, lol. I think we are still going to need nuclear as a baseload power supply where hydro doesn't work because it's too dry or flat. We gotta get off "clean coal" and "natural gas" as baseload power. I like sodium reactors and advanced, non-light water designs. Light water has become a political hot potato even though it is far safer than coal plants in terms of number of people hurt or killed by emissions.

    As the coal and gas industry has done, advanced designs will need new names like "natural rock" to distance themselves from negative connotations.

58 comments