Google's Bard Urges Google to Drop Web Environment Integrity
Google's Bard Urges Google to Drop Web Environment Integrity
I asked Google Bard whether it thought Web Environment Integrity was a good or bad idea. Surprisingly, not only did it respond that it was a bad idea, it even went on to urge Google to drop the proposal.
For the last time: these language models are just regurgitating what people have said. They don't analyze or reason.
That's not entirely true.
LLMs are trained to predict next word given context, yes. But in order to do that, they develop internal model that minimizes error across wide range of contexts - and emergent feature of this process is that the model DOES perform more than pure compression of the training data.
For example, GPT-3 is able to calculate addition and subtraction problems that didn't appear in the training dataset. This would suggest that the model learned how to perform addition and subtraction, likely because it was easier or more efficient than storing all of the examples from the training data separately.
This is a simple to measure example, but it's enough to suggests that LLMs are able to extrapolate from the training data and perform more than just stitch relevant parts of the dataset together.
That's interesting, I'd be curious to read more about that. Do you have any links to get started with? Searching this type of stuff on Google yields less than ideal results.
isn't gpt famously bad at math problems?
I know. I just thought it was a bit ironic seeing such a strongly worded response from it.
Exactly. They’re great bullshitting machines, that’s it.
Same as humans.
Could you share your source?
Large language models literally do subspace projections on text to break it into contextual chunks, and then memorize the chunks. That's how they're defined.
Source: the paper that defined the transformer architecture and formulas for large language models, which has been cited in academic sources 85,000 times alone https://arxiv.org/abs/1706.03762
Yes because online discussions usually aren't inherently subjective and instead backed by sourceable knowledge. Sorry for the cynicism but one could always find any source that underlines any point so everything should be taken with a grain of salt.
I'd personally argue, that the way generative AI works lends itself to produce answers that fit the general consensus of the internet that is relevant to the given prompt, because it calculates the most likely response based on the information available. Since most information relevant to "Google Web DRM" is critical of it (Google doesn't call it DRM themselves), it makes sense a prompt querying the AI for opinions on Web DRM will result in a rather negative response, if Google doesn't tamper with it to their advantage.