Weil die Diskussion um ChatGPT und andere Sprachmodelle einfach nicht abebben will, beteiligen wir uns eben dran. Andernfalls drohen wir noch verrückt zu werden. Debora Weber-Wulff und Constanze Kurz schreiben sich den Frust von der Seele, präsentieren aber auch drei einfache Regeln für eine ethisch...
Der Artikel versucht zwar ein bisschen weiter zu gehen, sie sprechen z.B. das Problem an, wie man zukünftig versuchen wird, immer mehr "künstliche" Filter und Beschränkungen einzubauen, aber ca. die Hälfte des Artikel ist das typische "Haha, guck mal, ChatGPT gibt noch ganz viele dumme Antworten, wie nutzlos es ist!".
Bezugnehmen darauf, dass die Behauptung aufgestellt wird, ChatGPT könnte Programmierern in Zukunft viel Arbeit abnehmen, verweisen sie darauf, dass Untersuchungen zeigen, dass ChatGPT oft Fehler im Code produziert. Dass es aber Recherchearbeit für Code gut abnehmen kann und einen geschulten Programmierer, der den Code noch grob korrigiert, ein mächtiges Tool bietet, wird vollkommen übersehen. Ganz abgesehen davon, dass doch gewaltiges Entwicklungspotential da ist und die jetzigen Erkenntnisse in vielen Bereichen noch keinen Anlass dazu geben, maschinelles Lernen als enttäuschend zu bezeichnen.
Puh, also ich hab ChatGPT jetzt schon öfter versucht als Hilfestellung fürs programmieren zu benutzen und es kam immer Bullshit raus. Der hat immer irgendwelche Bibliotheken und Parameter erfunden die so wirken als wären sie die genaue Wunderwaffe für mein Problem. Das Problem ist dann, dass ChatGPT diese Bibliotheken aus zB Javascript kennt, mein Problem aber zB in GoLang ist, ChatGPT "übersetzt" dann die Dokumentation von der Javascript Bibliothek so dass sie aussieht als wäre sie Go.
Ich sehe großes Potenzial in ChatGPT wenn man es richtig einsetzt. Man kann es super nutzen um zB seine Texte umschreiben zu lassen. ChatGPT interpretiert dann den Text wie es ihn versteht und wenn die neue Variante von ChatGPT Fehler enthält, kann man gut daraus schließen wo der Ursprungstext Interpretationsspielraum bietet und falsch verstanden werden kann. Auch für schnelle Businessmails ist das gut. Aber in meinen Augen nicht fürs Programmieren
Ich benutze es gerade fürs Programmieren. Kleine Konstrukte, keine kompletten Programme, schreibt es mir relativ zuverlässig und es sind meist nur Kleinigkeiten, die ich korrigieren muss. Oder solche Sachen, wie etwas verzwicktere regular expressions inkl. dem Drumherum, wie dem genauen Verwerten der Ergebnisse, kriegt es gut hin. Gerade das ist auch etwas, was immer etwas umständlich zu googeln ist.
ChatGPT ersetzt mich als Programmierer nicht, aber macht mich in einigen Bereich durchaus effizienter.
Aber worum es mir eigentlich ging ist, dass der Artikel maschinelles Lernen mit den falschen Argumenten jetzt schon abschreibt.
dass ChatGPT diese Bibliotheken aus zB Javascript kennt, mein Problem aber zB in GoLang ist, ChatGPT "übersetzt" dann die Dokumentation von der Javascript Bibliothek
Klingt eigentlich genau wie der Junior-Dev, dem man Google wegnimmt und zu einer Antwort nötigt.
Das ist doch genau was OP mitunter meinte. Es geht nicht um den ist-Zustand, sondern um den Weg, der hier geebnet wird und der irgendwann unser aller Leben beeinflussen wird.
Ich habe das Problem kaum, aber ich nutze GPT 4 seit verfügbar und gehe recht konservativ an die Sache ran. Immer nur ein, zwei Probleme auf einmal, dann schrittweise erweitern, überschaubarer Kontext, Handkorrektur wenn notwendig, dann meist neuer Chat um den alten Kontext mit Fehlern nicht drin zu behalten. Die API ist super, da kann man direkt die Antworten editieren, dann kann man das sparen. Und natürlich proaktiv auf Fehler hinweisen, in vielen Fällen reicht das, insbesondere mit Fehlermeldungen, aber wenn nicht, sollte man genug Ahnung haben, um es geradezurücken.
Größere Projekte passen halt nicht in den Kontext oder es sind einfach zu viele Infos. Ich behandle das Ding so ähnlich wie einen brillianten, aber absolut unerfahrenen Azubi. Einfache Arbeiten mit wenig Domänenwissen abgeben, Ergebnisse prüfen, Feedback geben, nicht zu viel erwarten und über schnelle Erfolge freuen weil nicht selbstverständlich. Selbst damit spare ich oft mehrere Stunden am Stück.
Schon GitHub Copilot probiert? Das steigert wirklich die Produktivität, einfach weil es ganze Blöcke an Boilerplate automatisch und angepasst vorschlagen kann.
Wo es auch spitzenmäßig ist und ein Gamechanger, ist das Potential von LLM‘s als „API Hub“ von allen ML Subkategorien.
Waren bisher Computer Vision, Schrift, Sprache, Diagnostik, Robotik, etc alles eingekapstelte Unterbereiche von ML, so können diese nun miteinander „kommunizieren“ und zusammen arbeiten. Man kann Videos nach Texten erstellen, Videoaudio transkribieren, Roboter per Sprache steuern und vieles mehr. Das war vorher nicht möglich, denn es gab die semantischen Verbindungen nicht, die LLM‘s ermöglichen. Da wird uns noch einiges Krasses die nächsten Monate überraschen
Es gibt keine ethische Verwendung von geschlossenen, privaten KI-Systemen. Diese Modelle sind nichts anderes als der Versuch öffentliches Wissen, ein öffentliches Gut, zu privatisieren.
Was mich an der ganzen Sache so stört ist diese Obsession nach Technik. Jetzt gibt es eine vermeintlich bahnbrechende Technologie, eine Lösung, deren passenden Probleme wir nun finden müssen. Lasst uns bitte anders rum handeln: Was ist das Problem? Welche Lösung passt dazu?
Ich bin weiß Gott kein Technikverweigerer, aber würden wir genau so inbrünstig auf Fehlersuche gehen, wie wir neue Technologien ausprobieren („Move fast and break things“), würden nicht Unmengen an Ressourcen (Arbeitszeit, Energie) unnötig verschwendet werden.
Jetzt gibt es eine vermeintlich bahnbrechende Technologie, eine Lösung, deren passenden Probleme wir nun finden müssen. Lasst uns bitte anders rum handeln: Was ist das Problem?
LLMs sind vielleicht keine unfehlbare Gottheit, aber trotzdem werden sie so einige Märkte ordentlich Durchrütteln. Vorallem in den Bereichen Recht, Mental Health, Spracherwerb und generell bei oberflächlichem Tutoring können sie meiner Auffassung nach glänzen.
Dafür leben wir leider im falschen Gesellschaftssystem. Mit Problemen lösen macht man kein Profit. In unserem System geht es nur darum immer und immer wieder neu Profit aus demselben Stein zu pressen.
Das Kapital meint, dass der Ressourceneinsatz einen positiven Erwartungswert hat. Natürlich kann es falsch liegen, aber der tracl record ist insgesamt gar nicht schlecht.