Yes I originally thought 90 but then noticed the absence of a right angle sign. Also 60+40=100 which means the last angle should be 80. Making that perpendicular 100/80
What a bunch of bullshit. Just draw it way off 90 if you don't want people to use a protractor. I calculated 125° because of this (but I'm happy I still got the right wrong answer, if that makes sense)
You start from left, and calculate them 1 by 1, based on the angles that you already know. It is quite simple actually, you just have to know they always add up to 180 (within triangle, and when you “split” the space over a straight line).
Nope. The value is "undefined". You don't have enough info to arrive at 135 - you are assuming that the bottom angle (sum of the angles that touch) is 180 degrees. Since there isn't a datum saying the bottom "line" is straight, nor does it say the triangle on the right is an isosceles triangle, it is impossible to solve.
I think assuming 2 line segments which make up a larger straight line segment to be parallel is generally accepted practice, and that would trump the angles that are drawn inaccurately.
Of course, it'd be better to put a hash through them both to indicate they're parallel, especially given the deceptively drawn most-likely-not-a-right-angle.
I hated pictures like this in school. The numbers are just slapped on an inaccurate image and somehow they expect people to ignore the obvious right triangles and just focus on the math part of it.
Fun fact: In Turkey's university admittance exam, all angles have to be absolutely accurate, and measurements have to be scaled down perfectly to the visible shape in a geometry question.
That's based on the assumption that the two angles in the middle add up to 180, which can't be assumed by inspection alone as demonstrated by the visibly square 80° angle
No, you should completely ignore the bottom half of the center line. You end up with a shape with four turns. Those four internal angles always add to 360.