1000 Hz seems to be close to the limit human of human vision, since we stop seeing motion blur above 1000hz. Seems like a good endpoint for display technology.
On the other hand I heard so many times the same argument for 144hz, 165hz and then 240hz....
Now 1000Hz is much higher frequency but in term of frame time it's not that far. I wouldn't be surprised if some people could successfully tell the difference in a "blind" test.
I remember people talking about 1000hz being the holy grail for vr headsets, though so it seems like there's more consensus on 1000 Hz being a good limit. Frame time is just the inverse of hz.
But yeah ive personally only used 144hz, I think I could see a difference with 204hz, but I'm not sure if I'd be able to discern 480 or 1000hz outside of maybe VR.
Not obvious at all. Motion blur at high movement speeds makes things unreadable even at 540 Hz, proving that even at 540 Hz there is still plenty of motion blur that the human eye can see.
The title doesn't ask if it's useful, it asks if it's required, considering that no one NEEDS a display to begin with, a 1000Hz display by definition cannot be NEEDED.
I will likely get one eventually, just like I have a 165Hz display now, but do I NEED it? Absolutely no.
Now, the high frame rate experts at Blur Busters bring word of a 4K, 1,000 Hz prototype screen being shown off by Chinese panel maker TCL CSOT at the manufacturer-focused DisplayWeek 2024 conference.
And while recent advancements in pixel-flipping times have enabled TCL's LCD prototype, Blur Busters estimates that 1,000 Hz OLED displays could be commercialized as soon as 2027.
The apparent, impending breaking of the four-digit refresh rate threshold got us thinking: Are we finally approaching a point of diminishing returns in monitor-makers' long-running battle of the Hz?
But even faster refresh rates could help with the apparent sharpness of extremely fast objects on Ultra HD displays—think of a mouse pointer or video game crosshair that can move across the roughly 4,000 horizontal pixels on a 4K display in a single second.
Nvidia data shows the RTX 4090 generating 600+ fps frame rates on aging-but-still-popular games like Rainbow Six Siege and Fortnite at "High" settings and a full 1440p resolution.
Factor in a few more generations of graphics card upgrades—not to mention frame-generation technology that could offer 10 reprojected frames for every key frame—and waiting a single millisecond for your monitor to show a new image might not be totally ridiculous.
The original article contains 628 words, the summary contains 202 words. Saved 68%. I'm a bot and I'm open source!
1000 Hz is going to be the end. Microsoft's experiments, umpteen years ago, said that's about the limit of human perception. Not "it looks smooth," but "it looks indistinguishable from reality because our wetware can't discern events much finer than that." Mmmaybe you go a little above that, to avoid two-millisecond events, but beyond that there is literally no point. Shutterglasses, I guess. Niche silliness.
More importantly - any framerate looks amazing. Same deal as G-Sync / FreeSync: frames appear onscreen the moment they are ready. There's no stutter at 29 Hz, or at 239 Hz.
I don't! I barely notice 120Hz so I just run at 60, my GPU loves me for it.
Imagine running a 4K 1000Hz screen, and needing 66 times more computing power to render all those pixels than my wee 1080p 60Hz screen where I see stuff fucking fine.
I doubt any game logic is going to be that fast ever. It might look better, but it won't make much difference in how players or even the game itself can react to events in the game.
Perhaps it'll make VR more comfortable or something.
Game logic runs independently from what your monitor can display. So it's really just a question on what effect it has on the player itself. Maybe for VR there's an argument to be made, although I feel 1000 Hz still sounds like complete overkill even in that area. But I'm gonna call bullshit on people who claim to be able to tell the difference of such high rates.
Game logic does not always run independent of the framerate. Look at Fallout 4, if you run it at more than 60fps the dialogue literally overlaps itself.
For rendered stuff, it typically does make for smoother motion, even at rates much higher than the eye can see, because of motion blur.
So, recorded video works fine at relatively low bitrates...but the camera is also set up to record a relatively-long exposure, something like a thirtieth of a second, and you see the scene averaged over that time. Your brain can see motion blur and interpret that usefully, to know that there is motion happening.
Rendered 3D game images typically do not work like that. You see a series of perfectly-sharp images at instants in time. So your brain doesn't get the nice smooth motion blur to work with.
But if your computer renders and displays the intermediate images, then your eye can work with that nice smooth blur.
It's probably possible to compute a motion-blur more efficiently than rendering a lot of intermediate frames, get at least some kind of approximation of true motion blur, and some games do that, but brute-force rendering of more frames is simple for s developer and accurate. Plus, any game that can support a high frame rate can do it, even if it doesn't have some kind of faux motion blur approximation.
I have a 165Hz monitor. When moving my mouse cursor around, I can definitely see independent images of the cursor.
EDIT: That being said, you could probably get a pretty good approximation by rendering and combining multiple frames on the card and only pushing a lower frame rate out to the monitor -- that is, you only really need beefy rendering hardware, not a fancy monitor or cable, to get pretty close. I suppose that in theory, a compositor could do that. I don't know if someone's already done that or not.