Tin in solder or some other meals can form spiky crystals when under stress. These whiskers can form short circuits if not properly insulated or not alloyed with other metals.
Tin is a prima donna metal. Grows conductive whiskers if you use it as a conductor, gets brittle if it gets cold and just makes things softer when alloyed. It's like it only wants to be looked at.
This can happen inside ICs and has been a known failure mode for high frequency processors for many years. I work in chip design, and we use software tools to simulate it. It's called electromigration.
This statement is not fully accurate. Whiskers in OP’s case are about (usually) tin whiskers that grow, often visibly, and then can connect (short) to unintended areas.
Electromigration is effectively when a large potential difference encourages ions to relocate to reduce the potential difference.
Big Whiskers have two methods of formation. The first way is that tin ions are able to move by becoming soluble in some form of water so they’re mobile. The other way whiskers can form is from stress alone. (Stress being force per area that compresses or tensions the metal in question, applied through a multitude of ways) Whiskers can be directed by electromigration so they form tendrils to a differing potential, basically purposefully ruining stuff instead of randomly shorting things.
Now in integrated circuits (ICs), there are extremely high currents running through extremely small regions. Electromigration in ICs is caused by electrons getting yeeted at extremely fast speeds, giving them significant momentum. They collide with ions in their path and dislodge the ions from their matrix. This can result in voids of ions preventing current from flowing (open circuits) or tendrils of ions making a path to an unintended area and connecting to it (shorting it). The tendrils here are also called whiskers, but are generated in a very different way (e.g., no water solubility or inherent stresses required) and on a significantly smaller scale. And probably not in tin.
The mechanism behind metal whisker growth is not well understood, but seems to be encouraged by compressive mechanical stresses. According to Wikipedia.
Electrons in metal always move the same speed, and potential differences in modern high perf applications are never above 3.3V. There are mechanical stresses in ICs introduced during manufacturing. So these cases aren't as different as you let on.
Anyway, point is, metal moves, we have some ideas why and can model some of them. From an engineering perspective these are both tin whiskers. We call whiskers made of copper and aluminum tin whiskers. You're describing a distinction without a difference.
Hey, tin whiskers! I haven't seen this happen in person since my Jerry rigged Celeron 333A killed itself. I'd created a monstrous homebrew cooler with raw bar stock aluminum as an IHS with a big fat peltier cooler and a huge heatsink so I could run the thing at 550mhz. The aluminum eventually grew a tin whisker after the machine had been running in my closet for a good 4 or so years and shorted the Celeron carrier board.
Apparently this was a pretty big problem in aerospace back in the early days, their electronics were particularly prone to this failure mode.
I'm not as tech minded as others on this platform. I think you said you were building a space ship in your closet that grew whiskers, and comitted suicide.
That seems like the kind of thing Disney would make an animated film about in the 60s. A child sized rocket thats grown depressed. So instead of flying to space with a kid inside, it instead goes into the closet for so long that it grows whiskers, and then ends it all.
It would be like that scene where bambis mom dies. It's ONLY there to traumatize kids, and punish parents who now have to deal with a crying kid.
Tin whiskers usually don't occur with most solders, are solders are formulated to prevent them. Perhaps this is defective solder, or there was a high thermal gradient, or repeated heat cycling has fractionated the alloy?