The opening of the European Pressurized Reactor in Flamanville comes 12 years late on the initial schedule.
Summary
France’s Flamanville 3 nuclear reactor, its most powerful at 1,600 MW, was connected to the grid on December 21 after 17 years of construction plagued by delays and budget overruns.
The European Pressurized Reactor (EPR), designed to boost nuclear energy post-Chernobyl, is 12 years behind schedule and cost €13.2 billion, quadruple initial estimates.
President Macron hailed the launch as a key step for low-carbon energy and energy security.
Nuclear power, which supplies 60% of France’s electricity, is central to Macron’s plan for a “nuclear renaissance.”
There is around a century's with of uranium with current mines.
But right now uranium is very cheap so most of it is "wasted". There is plenty of way of recycling used nuclear fuel or improving the productivity of uranium enrichment.
If uranium supply starts to actually be a problem there is a way to "create" more nuclear fuel: breeder reactor.
With breeder reactor France could fuel their reactor for millennia only with the depleted uranium they have in stock (when enriching uranium you end up with a tiny account of enriched uranium on one side and depleted uranium on the other, France is keeping the depleted uranium in stock specifically for this scenario)
Yeah or put another way: All that nuclear waste we occasionally talk about burying under a mountain has something like more than 90% of its energy left.
They speak about it in the article I linked (in French unfortunately). The waste that we talk about burying is what's left AFTER extracting all the components that could be reused.
I have always wondered how it's stored... always imagined like 55 Gal drums in some Simpsonsesque way, but that doesn't really make sense... but maybe it does?
The world's present measured resources of uranium (6.1 Mt) in the cost category less than three times present spot prices and used only in conventional reactors, are enough to last for about 90 years.
(Note this is a *pro-*nuclear power organization.)
New technology may change that. We were once told that the oil in the Canadian tar sands was not economical enough to extract and now they're extracting it. The paper also discusses the possibility of thorium as a fuel source, although it has yet to see commercial viability.
As-is, and with current reactors, we don't have much we can use. Relying on new technology to change that could be a poor gamble.
When I was at school in the early 90s I was told oil would run out in 30 years, yet here we are, 30 years later and not only did it not run out, but people aren't even talking about it running out.
100 years is a long time, and I suspect that nuclear will seem very old fashioned by then, and today's power stations will have been long since decommissioned. If we're not getting close to 100% of our power from wind and solar and tidal by then, we'll be shafted anyway.
You probably read about U-235, but yes. There are soviet BNs, their chinese clone, french experimental reactor and I think topic reactor, which can work on plutonium, which is side-product in regular reactors.